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Prerequisites: 
 
 Since I can’t cover every possible combination of assembler and hardware, I’ll 
make a few assumptions.  My assumptions are that you’re using the 32-bit NASM 
assembler on a Windows machine sporting an x86 processor.  Further, I’ll assume that 
you have GCC installed on your machine as that’s what we’ll be using to link our object 
files with the C library.  Finally, I’ll assume that you have at least a passing familiarity 
with C so that you can use the C library without too much trouble. 
 
 
Notes about the Tutorial 
 
 This tutorial is neither authoritative nor complete.  It is written for a beginner on 
the assumption that the tutorial will get you started and from there you can find your way 
to more complete resources.  The reason I decided to write this is because all of the 
beginner material I’ve found has either been too cryptic to be of any use (written by 
experts who can’t teach), too old to be of any use (DOS really *is* dead), or overly 
complicating the syntax when assembly should be small and beautiful (Randall Hyde’s 
HLA language). 
 
 Here are some handy links that will be of use inconjunction with and after getting 
your feet wet here.  They include the NASM assembler itself and relevant documentation.  
Further resources can be easily found through Google, and I hesitate to list them here 
because links are so transient.  With any luck, the two links I do give will remain 
comfortably constant, but if not, Google is your friend. 
 
NASM Assembler
NASM Documentation
 
 
Basic Components (.data section) 
 
 An assembly source file consists of several parts that are divided into sections. 
The sections that we will be using are .data, .bss, and .text.  The .data section holds your 
initialized global variables, and you start the .data section with the section keyword 
followed by the name of the section.  It’s not required, but square brackets help the 
section header to stand out. 
 

[section .data] 
 
; Initialized variables 

http://webster.cs.ucr.edu/AsmTools/NASM/index.html
http://nasm.sourceforge.net/doc/html/nasmdoc0.html


 
If you haven’t already figured it out, comments start with a semicolon and end at 

the first newline.  To actually declare a variable in the .data section, you first need to give 
it a name.  Names in assembly are nothing more than labels, like case labels or goto 
labels in C.  A label is an identifier followed by a colon. 
 

[section .data] 
 
myvar:  ; Declare a variable 

 
Naturally, simply giving a variable a name doesn’t allocate memory for it or 

assign it a value.  To allocate memory in the .data section, you use the allocation 
keywords: db, dw, and dd.  They allocate one byte, two bytes (one word), and four bytes 
(one double word), respectively.  There are two others that extend beyond four bytes and 
are typically used with floating-point, dq and dt, but we won’t use them in this tutorial.  
The allocation keyword follows the label for a variable. 
 

[section .data] 
 
myvar:  db ; Initialize the variable 

 
 Now that we have a size for our memory, we can initialize it to something.  Let’s 
make a string.  Strings in assembly can be delimited using either single or double quotes.  
My preference is single quotes unless the string contains a single quote, in which case I 
use double quotes.  NASM also allows us to follow the string with a comma separated list 
of characters or whatnot that add to the string.  This can be used to create non-printing 
characters like a newline (ASCII code 10) or a null character for C-style string handling.  
Initialization constants are so similar to C that you shouldn’t have any issues. 
 

[section .data] 
 
myvar:  db ‘Hello, world!’,10,0 ; C-style string 

 
 
 
Basic Components (.bss section) 
 

Following the .data section is the .bss section.  .bss is just a cryptic name for 
uninitialized data, so don’t worry.  It’s really no harder than the .data section.  The 
allocation keywords for the .bss section are resb, resw, and resd (also with resq and rest 
that we won’t use).  Like the .data section, variables are given a name using a label, but 
because there is no initialization, you now need to explicitly tell NASM how much of 
something you want. 

 
[section .bss] 
 



myvar:  resb 64 ; 64 bytes 
myint:  resd 1 ; 1 dword 
mywords: resw 5 ; 5 words 
 

 
Notice that the number is scaled to the size you specify, so mywords is actually 10 

bytes because a word is 2 bytes, and 5 x 2 = 10. :-)  This is especially important because 
you’ll be used to scaling the stack pointer later on, and that uses a strict byte count.  If 
you accidentally give a byte count, you could be wasting a lot of space, so be careful. 
 
 
Basic Components (.text section) 
 

The next section is the .text section. This is where all of your actual code will 
reside, and where it really starts to get interesting.  Because we’ll be interfacing with C to 
handle a lot of functionality, such as I/O, we need to follow GCC’s rules for program 
startup and shutdown.  That basically means a global _main function that returns an 
integer.  NASM lets you specify a global function with the global keyword, then the 
function itself is just a label. 

 
[section .text] 
 
 global _main 
_main: 
 mov eax,0 
 ret 
 

 
Whoa, wait up a second! What’s with the stuff after the label?  That’s the second 

part of the requirement, where _main returns an integer.  The return value is stored in a 
register called eax, and control is returned from a subroutine using the ret instruction.  
The mov instruction is basically assignment, where the second operand is assigned to the 
first operand.  So this code assigns 0 to eax, and returns eax to the calling process.  This 
program is directly equivalent to the following C program. 

 
int main ( void ) 
{ 
  return 0; 
} 
 

 
What if we want to print something, like the hello world program?  Just like the 

global keyword, NASM has an extern keyword that lets you tell the assembler that you’re 
using a subroutine defined elsewhere.  Then the subroutines can be called with the call 
instruction.  Here’s the hello world program in NASM assembly. 

 



[section .data] 
 
hello: db 'Hello, world!',10,0 
 
[section .text] 
 
 global _main 
 extern _printf 
_main: 
 push hello 
 call _printf 
 add esp,4 
 
 mov eax,0 
 ret 
 

 
Okay, that’s not so simple.  Well, you shouldn’t expect it to be since assembly is a 

1:1 correspondence to the machine instructions of the processor.  All of the stuff that 
higher level languages hide from you, like pushing arguments and fixing stack pointers, 
has to be done manually.  In this case, you need to push the address of the string onto the 
stack, which is how assembly passes arguments to subroutines, call _printf, and then 
remove the address of the string from the stack. 
 

The key element here is that the stack remains pristine.  Anything you push onto 
the stack needs to be removed either by using the pop instruction or by adding to the 
stack pointer, esp.  We’ll cover stack manipulation shortly. 
 

To run this program, you first need to assemble it into an object file that GCC 
understands.  Then you run GCC on the object file to link with the C library.  To 
assemble the file to a proper object file, you can use the –f switch to nasmw.exe using the 
win32 option. 

 
C:\>nasmw –f win32 prog.asm –o prog.obj 
 

 
This gives you the prog.obj file in the root directory.  The –o switch is identical to 

GCC’s –o switch and it lets you specify the name of the object file.  Now you can call 
GCC with the newly created object file and make an executable file with your chosen 
name. 

 
C:\>gcc prog.obj –o prog.exe 
 

 
That’s all there is to it.  Call prog.exe and watch your masterpiece run.  

Congratulations, you’ve made the first step toward being an assembly programmer! 



 
C:\>prog.exe 
Hello, world! 
C:\> 
 

 
 
Registers 
 

The real work of moving stuff around is done with registers.  Registers are really 
really really fast, really really tiny blocks of memory that sit right on top of the CPU, so 
access is blazing fast.  Any data movement will involve a register at some point, if only 
for the speed benefits.  The processor also uses instructions that work on registers 
because it’s faster.  Each register has (or had) a well defined job, and it’s best to use them 
for those jobs because the instructions are optimized for it, and it helps make your code 
self-documenting.  There are eight general purpose registers that we’ll look at, each 
named with the acronym suggesting their jobs: 
 
eax - Extended Accumulator Register 
ebx - Extended Base Register 
ecx - Extended Counter Register 
edx - Extended Data Register 
esi - Extended Source Index 
edi - Extended Destination Index 
ebp - Extended Base Pointer 
esp - Extended Stack Pointer 
 

The extended part means that the register is 32-bit. Remove the e and you have all 
eight of the 16-bit general purpose registers.  The four registers break down into a union 
of smaller registers, where eax breaks down into ax, which is the lower two bytes of eax.    
Correspondingly, ax breaks down into ah and al, which are the upper and lower byte, 
respectively.  This applies for eax, ebx, ecx, and edx. 
 

eax is the accumulator simulator for the x86 processor. ;-)  Several instructions 
have optimized opcodes for operations that assume eax.  These are add, adc, and, cmp, or, 
sbb, sub, test, and xor.  You can use these to your advantage.  Also be aware that some 
operations require you to use eax in such a way, which helps explain the usage of 
multiplication, division, and sign extension.  Movement to eax is highly optimized, so if 
you perform as much work with it as possible, you'll probably have faster code. 
 

ebx is the only register without a well defined purpose.  Feel free to use it for 
extra storage space, but keep in mind that it’s an untouchable register that needs to be 
restored to its original value when you’re done with it. 
 

ecx is a loop counter, plain and simple.  Prefer ecx when working with loops, but 
be aware that the native direction that ecx moves is down.  That is, it's decremented 



rather than incremented.  However, changing the direction of an incrementing loop is a 
simple exercise most of the time. 
 

edx is sort of an extension to eax.  Extended size items can be stored by 
overflowing eax into edx.  That's why some instruction documents talk about [edx:eax]. 
You can think of [edx:eax] as a 64-bit pseudo-register. 
 

esi and edi are the read and write registers for string operations, and several 
instructions use them.  Generally, if you don’t use any instructions that expect edi or edi, 
you can use the two registers for string traversal stuff. 
 

esp is the top-of-stack pointer.  ebp is an offset onto the stack that refers to either 
arguments or local variables in a subroutine.  esp shouldn't be used for anything but its 
designed purpose, but ebp is designed to help you avoid working too much with esp. 
 

Unless stated otherwise, any of the general purpose registers can be used for other 
things if the need arises, but be aware that instructions are designed and optimized for the 
registers' jobs.  Not using them as they were designed can result in awkward or confusing 
code. 
 

Because we're interfacing with C, we need to remember that C expects any 
subroutine to leave certain registers in the same state that it got them.  You can use them 
internally, but you need to restore their values before you're done.  Likewise, any C 
functions that you call will follow this rule as well.  The untouchable registers that are 
relevant for now are ebx, esi, edi, and ebp. 
 

You'll notice that whenever we use one of the untouchable registers, like ebp, 
we’ll make sure to push it onto the stack before changing its value, and pop it off when 
we’re done.  Likewise, any register that isn't untouchable (ie. ecx), we’ll push onto the 
stack before calling a C function and then pop it off when the function returns, because 
we don't want to lose the value and the function isn't required to restore it after using the 
register internally.  This stack magic is required learning for any assembly 
programmer. :-) 
 
Memory Addressing 
 

NASM is very consistent in how it addresses memory.  For any name, name is the 
address of the memory and [name] is the contents of the memory.  Square brackets 
around a name are like the indirection operator in C.  You can think of every label as a 
pointer, if you want.  Let’s see how it works with a “simple” program. 

 
[section .data] 
 
mystr: db 'ABCD',10,0 
fmt1: db 'eax   = %d',10,0 
fmt2: db '[eax] = %d',0 



 
[section .text] 
 
 global _main 
 extern _printf 
_main: 
 ; Print the string 
 push mystr 
 call _printf 
 add esp,4 
 
 ; Print the address of the string 
 push mystr 
 push fmt1 
 call _printf 
 add esp,8 
 
 movzx eax,byte [mystr] 
 
 ; Print the first character 
 push eax 
 push fmt2 
 call _printf 
 add esp,8 
 
 mov eax,0 
 ret 
 

 
Don’t run away screaming, it’s not that bad.  Remember that each time you call a 

subroutine, you first push the arguments to that function in reverse order (we’re working 
with a stack, remember, so the first to pop off of the stack is the first argument).  Then 
when the subroutine returns, you have to fix the stack pointer so that it points to the same 
place it did before you did all of the pushing.  Multiply 4 times the number of arguments, 
and, remembering that there needs to be zero impact on esp when you’re done with it, 
you can easily see why I added 4 and 8 to esp after the three printf calls.  That’s the bulk 
of the program, so let’s remove those parts and get right to the meat. 

 
mystr: db 'ABCD',10,0 
 
; Print the string 
push mystr 
 
; Print the address of the string 
push mystr 
 



movzx eax,byte [mystr] 
 
; Print the first character 
push eax 
 

 
Printing the string is obvious enough; we push the address (a pointer to) the string, 

which is what printf expects as its first argument.  Then we print the address of the string, 
remembering that an unadorned name for any variable is the address of that variable.  So 
in C, mystr would be equivalent to &mystr[0].  Then comes the wacky stuff.  As you’ll 
learn shortly, the stack only allows dwords.  If you just go ahead and push dword [mystr], 
you’ll get a big number because the other three bytes of the dword aren’t empty.  Not 
quite what we wanted. 
 

So what we need to do is make sure that only the lowest byte of the dword has the 
value of the character, and the rest of the bytes are all zero.  This is done with the movzx 
instruction.  movzx means mov with zero extension, which means it copies a byte into the 
low order byte of the dword and copies zeros into the rest of the dword.  There’s also a 
movsx that fills the rest of the dword with the sign of the character, so you can correctly 
copy a negative value.  After the movzx, the eax register looks like this, and that’s the 
value we want. 

 
[0][0][0][65] 
 
 
Now, it’s not always as simple as name is the address and [name] is the contents.  

Well, it is, but it doesn’t always seem that way.  You can also use an offset into the 
contents of the address.  For example, movzx  eax,byte [mystr + 3] would give us the 
value of ‘D’ instead of ‘A’ because we’re offsetting the address by 3 bytes.  These 
addresses can be complicated, but most often you’ll find yourself using the [base + 
offset] or [base + multiplier * offset] forms.  The first is good for a straight byte count 
offset and the second is good for a number of items of size N offset. 
 

Finally, sometimes you need the address of an offset.  For example, let’s say that 
instead of simply printing a single character, we want to print a slice of the string, starting 
at ‘C’.  Okay, what do we push?  If you said dword [mystr + 2], you get a cookie and 
then a slap on the wrist. :-)  [mystr + 2] is the character ‘C’ in the string, not the address 
of the character ‘C’ in the string.  That means that printf will be looking at address 67, 
which is not quite what we wanted. 

 
What we need is something like the address-of operator in C, where by applying 

the operator, you get the address of some piece of data.  Fortunately, assembly offers you 
the lea instruction.  lea stands for load effective address, and it’s roughly equivalent to the 
address-of (‘&’) operator in C.  The syntax is much like mov, where the right operand is 
a data reference and the left operand is a register to store the address of the data.  Here’s 
how lea is used to print the slice. 



 
[section .data] 
 
mystr: db 'ABCD',10,0 
 
[section .text] 
 
 global _main 
 extern _printf 
_main: 
 ; Print the string 
 push mystr 
 call _printf 
 add esp,4 
 
 ; Print a slice 
 lea eax,[mystr + 2] 
 push eax 
 call _printf 
 add esp,4 
 
 mov eax,0 
 ret 

 
 
The Stack 
 
 Every program is allocated a stack to use for scratch data, local variables, 
subroutine parameters, return values, and so on.  The stack is your friend, even if it 
causes you untold frustration. :-)  When your program starts, you have one register, called 
esp (for extended stack pointer) devoted solely to telling you the top of the stack at any 
given point.  Any changes to esp that you make must be reversed or you’ll quickly feel 
the pain of an inaccurate stack pointer.  Here are the rules: 
 

1) Anything you push onto the stack gets popped when you’re done 
2) When you add to esp, you subtract the same amount when you’re done 
3) When you subtract from esp, you add the same amount when you’re done 

 
 The stack pointer must remain pristine or you’ll have problems.  Consider this: 
When the program starts, esp points to memory that contains the return address of the 
program.  If you push 0 but forget to pop it, then you’ve effectively changed the return 
address to 0, because that’s what the program will use.  That’s nasty stuff, don’t do it. ;-) 
 
 Single items are added to the stack (by first subtracting 4 from esp and then 
mov’ing the data to [esp]).  You can do this manually without too much trouble by using 
the sub and mov instructions. 



 
[section .data] 
 
fmt: db '%d',10,0 
 
[section .text] 
 
 global _main 
 extern _printf 
_main: 
 sub esp,4 
 mov dword [esp],123 
 sub esp,4 
 mov dword [esp],fmt 
 call _printf 
 add esp,8 
 
 mov eax,0 
 ret 
 

 That’s awkward, and I’m sure you’ve noticed by now that there’s an instruction 
that does just that.  The push instruction takes some form of data as its operand, subtracts 
4 from esp, and mov’s the data into the contents of the address that esp points to. 

 
[section .data] 
 
fmt: db '%d',10,0 
 
[section .text] 
 
 global _main 
 extern _printf 
_main: 
 push 123 
 push fmt 
 call _printf 
 add esp,8 
 
 mov eax,0 
 ret 
 

 The push instruction has a corresponding pop instruction that mov’s the contents 
of the address that esp points to its operand, and then adds 4 to esp.  Let’s say that we 
want to take the two values that we pushed and save them in two registers for later use. 

 
[section .data] 



 
fmt: db '%d',10,0 
 
[section .text] 
 
 global _main 
 extern _printf 
_main: 
 push 123 
 push fmt 
 call _printf 
 pop eax 
 pop edx 
 
 push edx 
 push eax 
 call _printf 
 add esp,8 
 
 mov eax,0 
 ret 
 

 For subroutine arguments, it’s rare to use pop because simply adding the 
appropriate number of dwords to esp is sufficient unless you want to save the contents of 
the stack elsewhere.  Push and pop are commonly used together to save untouchable 
registers, or to save registers that will be modified by a subroutine when you want to keep 
their value. 
 
 The stack has two important uses:  First, it stores subroutine parameters, as 
you’ve seen when calling C functions.  Inside of a subroutine, the parameters are 
accessed by using memory addressing and lea.  For example, let’s look at a program that 
prints out the number of command line arguments to main (through argc), and the first of 
those arguments (through argv). 

 
[section .data] 
 
fmt1: db 'argc    = %d',10,0 
fmt2: db 'argv[0] = %s',10,0 
 
[section .text] 
 
 global _main 
 extern _printf 
_main: 
 push dword [esp + 4] 
 push fmt1 



 call _printf 
 add esp,8 
 
 mov eax,dword [esp + 8] 
 
 push dword [eax] 
 push fmt2 
 call _printf 
 add esp,8 
 
 mov eax,0 
 ret 

 
 Upon entering a subroutine, the value of [esp] is always the return address of the 
subroutine.  So it stands to reason that the first argument is stored at [esp + 4], the second 
at [esp + 8], and so on.  Therefore, [esp + 4] is argc, and we can use it directly as that’s 
the data we want.  However, [esp + 8] is argv, which is defined as a pointer to a pointer, 
or an array of pointers.  If we try to print [esp + 8], we won’t get the output that we want.  
So the previous program performs a double dereference trick by saving the contents of 
the memory address [esp + 8] in a register.  That gives us the address of the array.  Then 
the register is dereferenced to give us the address of the first pointer in the array, which is 
the one we really want. 
 
 We can take this trick all of the way down to the bottom, where the we get to a 
single character in the string.  The process is the same down the line, which is good 
because consistency begets good coding practices. :-) 

 
[section .data] 
 
fmt1: db 'argc       = %d',10,0 
fmt2: db 'argv[0]    = %s',10,0 
fmt3: db 'argv[0][0] = %c',10,0 
 
[section .text] 
 
 global _main 
 extern _printf 
_main: 
 push dword [esp + 4] 
 push fmt1 
 call _printf 
 add esp,8 
 
 mov eax,dword [esp + 8] 
 
 push dword [eax] 



 push fmt2 
 call _printf 
 add esp,8 
 
 mov eax,dword [esp + 8] 
 mov edx,dword [eax] 
 
 push dword [edx] 
 push fmt3 
 call _printf 
 add esp,8 
 
 mov eax,0 
 ret 

 
 Wait, why did we repeat the mov from [esp + 8] to eax?  Remember that eax is 
not an untouchable register, and it’s very popular, so you can expect any subroutine that 
you call to trash it and not restore the value.  So we need to make sure that eax still has 
the value we want by recalculating it and storing it back in eax. 
 
 The stack is also used for local variables in a subroutine.  You can “allocate” local 
variables by subtracting from esp and then using memory addressing to look at the block 
you want.  However, when you subtract from esp, you need to add the same amount 
when you’re done and want to “free” the local variables. 
 

[section .data] 
 
fmt: db 'local var = %d',10,0 
 
[section .text] 
 
 global _main 
 extern _printf 
_main: 
 sub esp,4 
 
 mov dword [esp],123 
 
 push dword [esp] 
 push fmt 
 call _printf 
 add esp,8 
 
 add esp,4 
 mov eax,0 
 ret 



 
 There are two schools of thought on how to access local variables.  Because it’s 
really best to avoid working directly with esp except when doing the necessary 
adjustments, ebp is preferred for the actual addressing.  The first school of thought is to 
keep track of esp like we did above, but mov the value of esp to ebp such that ebp refers 
to the first local variable, and [ebp + n] will give you further local variables. 
 

[section .data] 
 
fmt: db 'First  = %d',10,'Second = %d',10,0 

 
[section .text] 
 
 global _main 
 extern _printf 
_main: 
 push ebp 
 sub esp,8 
 mov ebp,esp 
 
 mov dword [ebp],123 
 mov dword [ebp + 4],456 
 
 push dword [ebp + 4] 
 push dword [ebp] 
 push fmt 
 call _printf 
 add esp,12 
 
 add esp,8 
 pop ebp 
 mov eax,0 
 ret 

 
 ebp is an untouchable register, so we save it before mov’ing the value of esp into 
ebp.  Subtracting esp by 8 gives us two dwords to work with as local variables, and then 
the starting address of those two dwords on the stack is assigned to ebp.  Now, no matter 
how much esp changes through the course of the program, the two local variables will 
always be at [ebp] and [ebp + 4].  At the end, esp is fixed by adding the same amount, 
then ebp is restored by popping the saved value from the stack into ebp.  Notice that 
everything we did at the start is undone in reverse order, that’s how stacks work. 
 
 The second school of thought on local variables is the one supported by the 
assembly language itself.  This does the reverse, first saving the current value of esp, and 
then subtracting esp to allocate local variables.  With this method, the local variables are 
at a negative offset from ebp rather than a positive offset. 



 
[section .data] 
 
fmt: db 'First  = %d',10,'Second = %d',10,0 
 
[section .text] 
 
 global _main 
 extern _printf 
_main: 
 push ebp 
 mov ebp,esp 
 sub esp,8 
 
 mov dword [ebp - 4],123 
 mov dword [ebp - 8],456 
 
 push dword [ebp - 8] 
 push dword [ebp - 4] 
 push fmt 
 call _printf 
 add esp,12 
 
 add esp,8 
 pop ebp 
 mov eax,0 
 ret 

 
Okay, that looks more awkward and confusing that the first method, so why use it?  Well, 
because there are instructions that make it easier for you. :-)  The enter and leave 
instructions handle the saving and assignment of ebp, and the adjustment of esp.  It’s 
slower than the manual way, but much cleaner. 
 

[section .data] 
 
fmt: db 'First  = %d',10,'Second = %d',10,0 
 
[section .text] 
 
 global _main 
 extern _printf 
_main: 
 enter 8,0 
 
 mov dword [ebp - 4],123 
 mov dword [ebp - 8],456 



 
 push dword [ebp - 8] 
 push dword [ebp - 4] 
 push fmt 
 call _printf 
 add esp,12 
 
 leave 
 mov eax,0 
 ret 

 
The enter instruction takes two operands:  The number of bytes to subtract from esp, and 
the nesting level for nested subroutines.  For us, we’ll keep the nesting level at 0 to keep 
things simple, so only the first operand really matters.  The leave instruction has no 
operands; it just does the right thing. :-) 
 
 
Arithmetic 
 
 Assembly, of course, supports all of the arithmetic operations that higher level 
functions support.  In fact, some of them are easier in assembly than in languages like C.  
Let’s start with addition and subtraction since we’ve already used them.  The add and sub 
instructions take two operands:  The first operand is the data to add to or subtract from, 
and the second operand is the amount to add or subtract. 
 
 Multiplication is less intuitive, because it operates implicitly on eax, with a 
register as the operand that specifies the amount to multiply by.  So for any multiplication, 
you need to mov the original value to eax, then the multiplier to another register of your 
choice, and then call either mul (for unsigned multiplication) or imul (for signed 
multiplication).  The result is stored in eax, or if there’s overflow, [edx:eax]. 
 

[section .data] 
 
fmt: db 'eax = %d',10,0 
 
[section .text] 
 
 global _main 
 extern _printf 
_main: 
 mov eax,2 
 
 push eax 
 push fmt 
 call _printf 
 add esp,8 



 
 mov eax,2 
 mov edx,2 
 mul edx 
 
 push eax 
 push fmt 
 call _printf 
 add esp,8 
 
 mov eax,0 
 ret 

 
 Division follows similar rules as multiplication (for both div and idiv), with the 
added problem of division by zero.  The quotient is stored in eax and the remainder in 
edx, so there’s no remainder instruction in assembly, since the remainder just falls out of 
division. :-) 
 

[section .data] 
 
fmt1: db 'eax = %d',10,10,0 
fmt2: db 'eax = %d',10,'edx = %d',10,0 
 
[section .text] 
 
 global _main 
 extern _printf 
_main: 
 mov eax,13 
 
 push eax 
 push fmt1 
 call _printf 
 add esp,8 
 
 mov eax,13 
 cdq 
 mov ebx,2 
 div ebx 
 
 push edx 
 push eax 
 push fmt2 
 call _printf 
 add esp,12 
 



 mov eax,0 
 ret 

 
 Wait a second, what’s that cdq instruction?  Well, div doesn’t just work on eax, it 
works on [eax:edx], which means that if the dividend is small enough to fit just in eax, 
edx needs to be zero.  It also means that we can’t use edx as the divisor.  We could 
simply mov 0 to edx and call it good, but it’s easier to sign extend eax into [eax:edx] with 
the cdq instruction.  It’s basically the same as movsx except without the mov, and you’re 
forced to use eax. :-) 
 
 Arithmetic negation can be performed with the neg instruction. It simply gives 
you the two’s complement negation (invert all bits then add one) of some data. There’s 
also a not instruction for the one’s complement negation (just invert all of the bits).  neg 
and not take one operand that they work on. 
 
 If you find yourself saying add x,1 or sub x,1 often, you’ve independently 
discovered the need for the inc and dec instructions that add one to their operand.  These 
instructions are likely to be optimized for adding 1, so you should favor them over add 
and sub.  
 
 
Loops, Conditionals, and Jumping 
 
 Those coming from a higher level language are usually shocked to learn that 
assembly does not have any advanced branch control features.  The only thing you can do 
to control the flow of execution in an assembly program is jump to a label, similar to goto 
in C.  The instructions to perform a jump are rather extensive, ranging from the 
unconditional jmp instruction to a number of conditional instructions that take their que 
from a mysterious flags register that we won’t look at in this tutorial.  The jump 
instructions we’ll use are as follows. 
 
jmp – Unconditional jump 
 
jz – Jump if zero 
jnz – Jump if not zero 
 
je – Jump if equal 
jne – Jump if not equal 
 
jl – Jump if less 
jle – Jump if less than or equal 
 
jg – Jump if greater 
jge – Jump if greater than or equal 
 



 The jl and jg instructions, and friends, work on signed values.  The corresponding 
unsigned instructions use the same variations except with ‘a’ for ‘above’ instead of ‘g’ 
for ‘greater’, and ‘b’ for ‘below’ instead of ‘l’ for ‘less’.  For now, we’ll assume that the 
magic comes from the cmp instruction, which compares two values and places the result 
somewhere that the conditional jump instructions can find it.  The details don’t really 
matter at this point. 
 
 A simple two way conditional test (aka. if..else) can be simulated using labels and 
conditional jumps.  Let’s write a quick program to enter an age and determine whether 
the user is an old fogey or a young’un. 
 

[section .data] 
 
prompt:  db 'How old are you? ',0 
fmt:  db '%d',0 
oldmsg:  db "You're old enough for assembly",10,0 
youngmsg: db "You're too young for assembly",10,0 
 
[section .text] 
 
 global _main 
 extern _scanf, _printf 
_main: 
 enter 4,0 
 
 push prompt 
 call _printf 
 add esp,4 
 
 lea eax,[ebp - 4] 
 
 push eax 
 push fmt 
 call _scanf 
 add esp,8 
 
 cmp dword [ebp - 4],30 
 jge old 
 
 push youngmsg 
 call _printf 
 add esp,4 
 
 jmp end 
old: 
 push oldmsg 



 call _printf 
 add esp,4 
end: 
 leave 
 mov eax,0 
 ret 

 
 Are these programs beginning to look less overwhelming now? :-)  The trick to a 
conditional test in assembly is to make sure that you jump over the code that isn’t used 
while executing the code that *is*.  This often results in several labels and several jumps.  
For example, an if..else is often set up like the following. 
 

 cmp a,b ; Is a equal to b? 
 jne else 
 
 ; a is equal to b 
 
 jmp end 
else: 
 ; a is not equal to b 
end: 

 
 Notice the careful logic that skips over the blocks that don’t match the condition.  
If a is equal to b, no jump is made initially, but after the processing of the true condition, 
a jump is made over the false condition.  Likewise, if a is not equal to b, a jump is made 
over the true condition and the false condition is processed.  An if without an else can 
skip the part where the else code is jumped over. 
 

 cmp a,b 
 jne false 
 
 ; a is equal to b 
false: 
 ; Moving on 

 
 Loops follow a similar pattern, except instead of a one-time compare and jump 
downward, you repeat the same block over and over by jumping upward.  There are two 
kinds of loops:  Test at the top, and test at the bottom.  A test at the top loop is like a 
while loop or a for loop in C, and a test at the bottom loop is like a do..while loop in C.  
Here’s are the two loop styles. 
 

 ; Test at the top loop   ; Test at the bottom loop 
loop:      jmp cmp 
 cmp [count],10  loop: 
 jge done    ; Code to execute 
 



 ; Code to execute   inc [count] 
     cmp: 
 inc [count]   cmp [count],10 
 jmp loop    jl loop 
done: 

 
 The test at the top loop should be avoided in favor of the test at the bottom loop.  
Why?  Because the number of instructions is smaller in the test at the bottom loop.  The 
two are side by side so that you can more easily see that there’s only one jump instruction 
in the test at the bottom loop, but two in the test at the top loop.  In code where every 
little bit counts, the test at the bottom loop will be faster.  On the other hand, when 
learning, you should keep these things in mind, but write whatever you feel comfortable 
with. :-) 
 
 
Doing Stuff (printing a string) 
 
 Easy I/O is critical when learning a new language.  If you can’t read data or 
output data, figuring things out with test code is much more difficult.  So the rest of this 
tutorial will cover basic I/O to help you test your newfound skills with assembly. 
 
 Up to now we’ve been using printf.  That’s fine, but printf is often overkill if all 
you need is to print a string with no formatting.  An alternative is the puts function, which 
prints a C-style string and a newline character. 
 

[section .data] 
 
msg: db 'This is a message',0 
 
[section .text] 
 
 global _main 
 extern _puts 
_main: 
 push msg 
 call _puts 
 add esp,4 
 
 mov eax,0 
 ret 

 
 Okay, now what if you want to print a string without the newline?  The fputs 
function is not a simple alternative because using the standard streams (stdin, stdout, and 
stderr) is awkward.  C defines those names to be macros, so you can’t simply say extern 
_stdout and expect the code to work.  You would need to know the internal name and the 
implementation details.  For example, GCC uses _imp__iob as the internal name, but 



_imp__iob is an array.  So as well as knowing the name, you need to know which 
elements of the array correspond to which streams, and the size of the FILE structure so 
that you know how far to offset into the array.  FILE streams are to be avoided unless you 
define them yourself using fopen, or unless you like pain. ;-) 
 
 Anyway, an alternative that is supported by both the POSIX standard and the 
Windows msvcrt.dll is the write function.  As a stream it takes a file descriptor (a simple 
number where 0 is stdin, 1 is stdout, and 2 is stderr), the string, and the number of 
characters to write.  This greatly improves string I/O when you consider the alternatives.  
The only problem is that write requires the length of the string.  For static strings in 
the .data section, you can use a trick. 
 
 The equ mnemonic defines a named constant.  So to create a constant called pi, 
you could say pi: equ 3.14159 and use pi to mean 3.14159.  A nice feature is that you can 
use an offset of a label to calculate the length of a string.  Couple this with equ and you 
have a nice way to get the length of a static string in the .data section. 
 

[section .data] 
 
msg: db 'This is a message' 
len: equ $-msg 
 
[section .text] 
 
 global _main 
 extern _write 
_main: 
 push len 
 push msg 
 push 1 
 call _write 
 add esp,12 
 
 mov eax,0 
 ret 

 
 Strings that are defined in the .bss section are different, because they don’t have a 
set size, only a set capacity.  For those strings you need to calculate the length either 
through something like strlen, a loop of your own, or an input function that returns the 
number of characters that were actually read. 
 
 
Doing Stuff (reading a string) 
 
 Scanf is typically a poor choice for string input, and fgets isn’t a good option due 
to the awkwardness of using stdout as an external name.  Fortunately, the write function 



has a corresponding read function that’s just as widely available.  Conveniently enough, 
it returns the length of the string it reads, so pairing read and write is a good thing. :-) 
 

[section .text] 
 
 global _main 
 extern _read, _write 
_main: 
 enter 36,0 
 push ebx 
 
 lea ebx,[ebp - 32] ; The string 
 
 push 32 
 push ebx 
 push 0 
 call _read 
 add esp,12 
 
 mov dword [ebp - 36],eax 
 
 push dword [ebp - 36] 
 push ebx 
 push 1 
 call _write 
 add esp,12 
 
 pop ebx 
 leave 
 mov eax,0 
 ret 

 
 Now, at this point we’re beginning to feel the pain of pushing arguments and 
cleaning up the stack pointer for every subroutine call we make.  Fortunately, NASM 
offers macro facilities that can wrap all of this away into a more conventional function 
call.  Unfortunately, it’s not a standard macro, so we have to write it ourselves.  
Fortunately, I’ve written it for you. :-)  What you need to do is create a new file, I called 
mine ‘macros.inc’, and paste this code into it. 
 

%macro invoke 2-* 
 %define _func %1 
 
 %assign __params %0 - 1 
 %assign __params __params * 4 
 
 %rep %0 - 1 



  %rotate -1 
  push %1 
 %endrep 
 
 call _func 
 add esp,__params 
%endmacro 

 
 How it works is beyond the scope of this tutorial, as are the macro facilities of 
NASM.  For now, we can take advantage of the macro without knowing how it does what 
it does.  And what it does is lets you use invoke as an instruction, with the first operand 
being the subroutine to call, followed by the arguments to the subroutine in first to last 
order.  You can include the macro file with the %include directive.  So the read/write 
program above can be rewritten like so. 
 

%include 'macros.inc' 
 
[section .text] 
 
 global _main 
 extern _read, _write 
_main: 
 enter 36,0 
 push ebx 
 
 lea ebx,[ebp - 32] ; The string 
 
 scall _read,0,ebx,32 
 mov dword [ebp - 36],eax 
 
 scall _write,1,ebx,dword [ebp - 36] 
 
 pop ebx 
 leave 
 mov eax,0 
 ret 

 
That’s much more pleasant to work with, especially if you’re more familiar with the C 
function call syntax than the reverse pushing of assembly.  If you prefer to list the 
arguments in reverse order, change %rotate -1 to %rotate 1 and while the subroutine to 
call will still be the first operand to scall, any further arguments will be listed from right 
to left instead of left to right. 
 
 
Doing Stuff (reading a number) 
 



 Numeric input is difficult if you need to perform the conversion from a string to a 
number on your own.  The good news is that the C library supports several functions that 
help you to either read a number directly (with scanf) or easily convert a string to a 
number (strtol and friends).  Here is a age program rewritten to use strtol instead of scanf. 
 

%include 'macros.inc' 
 
[section .data] 
 
prompt:  db 'How old are you? ',0 
fmt:  db '%d',0 
oldmsg:  db "You're old enough for assembly",10,0 
youngmsg: db "You're too young for assembly",10,0 
 
[section .text] 
 
 global _main 
 extern _read, _printf, _strtol 
_main: 
 enter 32,0 
 
 scall _printf,prompt 
 lea ebx,[ebp - 32] 
 scall _read,0,ebx,32 
 mov byte [ebx + eax - 1],0 
 
 scall _strtol,ebx,0,0 
 
 cmp eax,30 
 jge old 
 
 scall _printf,youngmsg 
 
 jmp end 
old: 
 scall _printf,oldmsg 
end: 
 leave 
 mov eax,0 
 ret 

 
 Notice that no error checking has been made with either scanf or strtol.  It’s easy 
to check the return value of scanf because it’s stored in eax, but strtol gets its error 
checking from the second argument, a pointer to a pointer.  This is where lea really shines, 
but I’ll refrain from showing you how to do it since you have the knowledge and the tools 
to error check strtol, and it’s a good exercise. :-) 



 
 
The End 
 
 That’s all folks!  By now you should be pleasantly surprised at the ease with 
which you can now read NASM syntax assembly language.  You should also be surprised 
that you can actually understand what’s going on as well, and maybe even be comfortable 
with writing what, at the beginning of the tutorial, was nothing more than gobbledygook. 
 
 Remember that you’ve only scratched the surface of assembly. There are 
hundreds of instructions and we only looked at some of the commonly used ones.  
Further, there are facets to NASM that extend and enhance assembly that are well beyond 
the scope of this tutorial.  We didn’t look at anything more than simple command line 
programs, but assembly can be used for everything from bare metal bios routines to the 
latest and greatest GUI application.  Finally, NASM is only one of many assemblers, all 
with a different syntax. 
 
 I hope you think that assembly isn’t as hard as you thought before, and that it 
might even be fun.  It is!  You just have to get over that first hurdle, which is what this 
tutorial was written to help you do.  Happy programming! :-) 


